Torsion growth of rational elliptic curves in sextic number fields

نویسندگان

چکیده

We classify the possible torsion structures of rational elliptic curves over sextic number fields. Among these group structures, all groups except C3⊕C18 are known to appear as subgroups E(K)tors for some curve E/Q and field K. prove that if image mod 2 Galois representation E is not equal Borel subgroup GL2(Z/2Z), then can't contain C3⊕C18.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the torsion of rational elliptic curves over quartic fields

Let E be an elliptic curve defined over Q and let G = E(Q)tors be the associated torsion subgroup. We study, for a given G, which possible groups G ⊆ H could appear such that H = E(K)tors, for [K : Q] = 4 and H is one of the possible torsion structures that occur infinitely often as torsion structures of elliptic curves defined over quartic number fields. Let K be a number field, and let E be a...

متن کامل

Torsion of Rational Elliptic Curves over Cubic Fields

Let E be an elliptic curve defined over Q. We study the relationship between the torsion subgroup E(Q)tors and the torsion subgroup E(K)tors, where K is a cubic number field. In particular, we study the number of cubic number fields K such that E(Q)tors ̸= E(K)tors.

متن کامل

Ranks of Elliptic Curves with Prescribed Torsion over Number Fields

We study the structure of the Mordell–Weil group of elliptic curves over number fields of degree 2, 3, and 4. We show that if T is a group, then either the class of all elliptic curves over quadratic fields with torsion subgroup T is empty, or it contains curves of rank 0 as well as curves of positive rank. We prove a similar but slightly weaker result for cubic and quartic fields. On the other...

متن کامل

Torsion subgroups of elliptic curves over number fields

This is an extended version of an expository talk given at a seminar on Mazur’s torsion theorem, summarizing work on generalizations to number fields and related results.

متن کامل

No 17-torsion on elliptic curves over cubic number fields

Consider, for d an integer, the set S(d) of prime numbers p such that: there exists a number field K of degree d, an elliptic curve E overK, and a point P in E(K) of order p. It is a well-known theorem of Mazur, Kamienny, Abramovich and Merel that S(d) is finite for every d; moreover S(1) and S(2) are known. In [7], we tried to answer a question of Kamienny and Mazur by determining S(3), and we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2021

ISSN: ['0022-314X', '1096-1658']

DOI: https://doi.org/10.1016/j.jnt.2020.09.010